Radio Frequency Safety Survey Report

Site Name: Laurens MS AND EB Morse

Elementary School

Site ID: N/A

Address: 1035 W Main St Laurens, SC 29360

County: Laurens County
Latitude: 34.494468
Longitude: -82.040347

Report Type: On-Site

Additional Site Information

POC Name: Nazareth Johnson

POC Email: Nazareth@milestonetowers.com

POC Phone: 703-364-5603

Site Structure Type: Tower

Report Information

Survey Technician: Scott Marmorine

Survey Date: 10/07/25

Access Control: Check in at front offices.

Report Writer: Kevin Nardi Report Date: 10/16/25 Meter Model/Serial: 21SN1685 Calibration Date: 10/13/25

Probe Model/Serial: WPF60 / 21WP220012

Calibration Date: 10/13/25

Waterford Contact: Waterford Support

Contact Email: Support@waterfordconsultants.com

WC Project Number: S-ORD117272
Reviewed By: S-ORD117272
Hector Manmano

Compliance Statement

Based on the information provided by the client and observations at the site, this installation Is Compliant with FCC Rules and Regulations with regard to Human Exposure to Radio Frequency Radiation.

Table of Contents

1 General Summary	2
1.1 Area(s) of Study	3
2.1 Measurement Locations	
2.2 Antenna Level Access Procedures-N/A	6
3 Survey Analysis	7
4 Recommendations for Compliance	43
5 Appendix A: Technical Framework	47
6 Appendix B: Qualifications of Waterford Consultants, LLC	50
7 Appendix C: RoofMaster	51
8 Appendix D: Statement of Limiting Conditions	52
9 Appendix E: Glossary of Terms	53

1 General Summary

Milestone Tower has contracted Waterford Consultants, LLC to conduct a *radiofrequency (RF) electromagnetic safety survey and FCC compliance assessment* of the Laurens MS AND EB Morse Elementary School site located at 1035 W Main St, Laurens, SC 29360. The compliance framework is derived from the FCC Rules and Regulations for preventing human exposure in excess of the MPE (Maximum Permissible Exposure) limits.

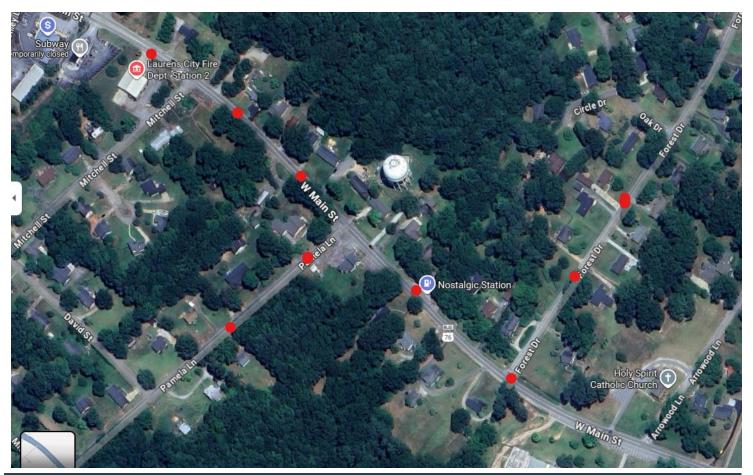
An overview of the applicable FCC Rules and analysis guidelines is presented in Appendix A. The subsequent sections contain information regarding the radio telecommunications equipment installed at this site and the surrounding environment regarding RF Hazard compliance.


As summarized in Section 4 of this report, no potentially hazardous conditions were identified, and no further action is required to achieve or maintain compliance.

All known RF sources have been included in this analysis. RF power density measurements have been collected at this site using a broadband instrument that considers all RF sources (300 kHz to 50 GHz). These measurement results and on-site observations is the basis for mitigation recommendations.

Documents Utilized in this Analysis:
Schools.xlsm
Extra.xlsm

1.1 Area(s) of Study


Surrounding Environment

Street View Image

SITE DETAILS

2.1 Measurement Locations

Measurement Locations / Installation Design

SITE DETAILS

2.2 Antenna Level Access Procedures-N/A

3 Survey Analysis

Waterford Consultants, LLC field personnel visited the site on 10/07/25 to evaluate specific installation scenarios.

All accessible walkable areas of the site were inspected.

Measurements were performed using a Wave Control SMP2 broadband meter (300 kHz to 50 GHz) which provides cumulative exposure readings from all RF sources at measurement locations. Measurement collection was consistent with FCC and industry procedures regarding the location of the probe to the RF source and making slow, sweeping motions over the area that a person would occupy.

The measurement results represent the cumulative contributions of all RF sources at the measurement locations. Examples of these sources include antennas supporting TV and FM broadcast, cellular and WIFI router operations, as well as RF-enabled mobile devices such as cellular phones that may be in the vicinity of the measurement location.

Power density values were recorded as a percentage of the FCC General Population.

Photographs collected during the survey document measurement locations and antenna installations. Antennas mounted within this site by other wireless operators are documented in terms of service-type and spatial position to adjacent antennas. As stated above, RF power density measurements reflect contributions of all sources.

(Wave Control SMP2 Broadband Meter)

Scenario: Extra Locations

Measurement Locations for Extra Locations # 1 through # 9

	Site Reading			Site Reading	
Loc#	Avg	Max	Loc#	Avg	Max
1	0.2474%	0.5077%	2	0.3980%	1.3780%
3	0.2849%	0.9134%	4	0.2115%	0.3804%
5	0.1213%	0.5842%	6	0.1207%	0.4393%
7	0.2465%	1.3110%	8	0.0587%	0.1681%
٥	0.2172%	0.9774%			

Measurement Readings are MPE % of FCC General Population Limits

Summary: The maximum spatially averaged power density reading was $\underline{0.3980\%}$ of the FCC General Population limits

Measurement # 1

Measurement # 2

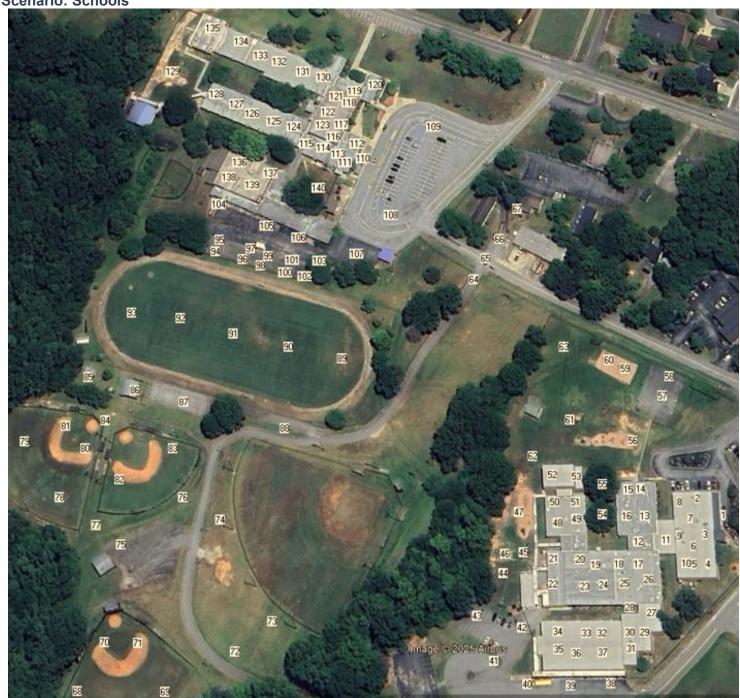
Measurement # 3

Measurement # 4

Measurement # 5

Measurement # 6

Measurement # 7


Measurement # 8

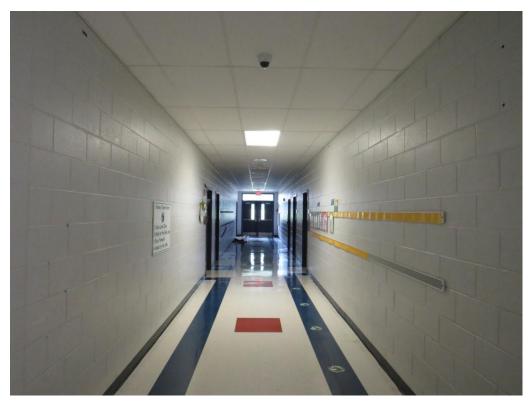
Measurement # 9

Scenario: Schools

Measurement Locations for Schools #1 through #140

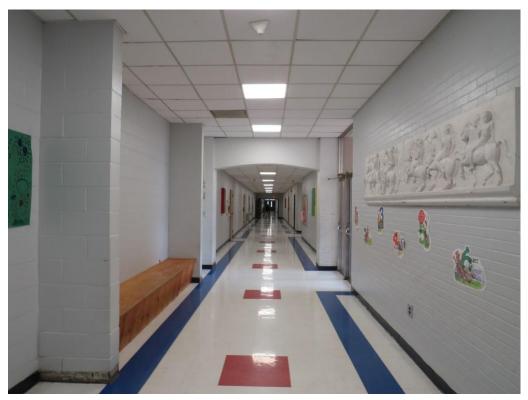
	Site Reading			Site Reading	
Loc#	Avg	Max	Loc#	Avg	Max
1	0.0560%	0.2281%	2	0.0454%	0.2415%
3	0.7227%	1.2860%	4	0.4916%	1.2120%
5	0.4558%	0.6673%	6	0.0362%	0.1355%

	Site Reading			Site Reading	
Loc#	Avg Max		Loc#	Avg Max	
7	0.0657%	0.1493%	8	0.0488%	0.1768%
9	0.0613%	0.1445%	10	0.0404%	0.1648%
11	0.0283%	0.1079%	12	0.0426%	0.1527%
13	0.0949%	0.2164%	14	0.0489%	0.2370%
15	0.1715%	0.2928%	16	0.0969%	0.3004%
17	0.1392%	0.2277%	18	0.1196%	0.1845%
19	0.1294%	0.3422%	20	0.1029%	0.1655%
21	0.0993%	0.1237%	22	0.1410%	0.1828%
23	0.1622%	0.2222%	24	0.3111%	1.0410%
25	0.4334%	1.0180%	26	0.5638%	0.8663%
27	0.1546%	0.1893%	28	0.0838%	0.5545%
29	0.1681%	0.7213%	30	0.2146%	0.3051%
31	0.3884%	1.0560%	32	0.2507%	0.3616%
33	0.3937%	1.1490%	34	0.6558%	1.4370%
35	0.0358%	0.1255%	36	0.7141%	1.4440%
37	0.7981%	1.5440%	38	0.7428%	1.5640%
39	0.0314%	0.0640%	40	0.4020%	0.7057%
41	0.6308%	1.3020%	42	0.2072%	0.9868%
43	0.0374%	0.2939%	44	0.4209%	0.8345%
45	0.5074%	1.0180%	46	0.9289%	1.5610%
47	0.1006%	1.1410%	48	0.1649%	1.5490%
49	0.5376%	1.1360%	50	0.1501%	0.6354%
51	0.1088%	0.3307%	52	0.2350%	0.6830%
53	0.4272%	1.5700%	54	0.7581%	1.3680%
55	0.3727%	0.7399%	56	0.5027%	1.0550%
57	0.2414%	1.1680%	58	0.7452%	1.2720%
59	0.6256%	0.8937%	60	0.1307%	0.2693%
61	0.1350%	0.3656%	62	0.0916%	0.1818%
63	0.1101%	0.3039%	64	0.1079%	0.3045%
65	0.1767%	0.4352%	66	0.0691%	0.2087%
67	0.1481%	0.3581%	68	0.1531%	0.2340%
69	0.2212%	0.5346%	70	0.0326%	0.0500%
71	0.0573%	0.3381%	72	0.0419%	0.0621%
73	0.1303%	0.5695%	74	0.0292%	0.0446%
75	0.0802%	0.5386%	76	0.1258%	0.2228%
77	0.1578%	0.3290%	78	0.0251%	0.0980%
79	0.0884%	0.1235%	80	0.0757%	0.1566%
81	0.0326%	0.0836%	82	0.0535%	0.0672%
83	0.1370%	0.4766%	84	0.0494%	0.1411%
85	0.1145%	0.3340%	86	0.1215%	0.3134%
87	0.0553%	0.0787%	88	0.0662%	0.1379%
89	0.0605%	0.0991%	90	0.0869%	0.1611%
91	0.1815%	0.6207%	92	0.0712%	0.1062%
93	0.1148%	0.3103%	94	0.0899%	0.1312%
95	0.0634%	0.0916%	96	0.0816%	0.2149%
97	0.1191%	0.2111%	98	0.1095%	0.1606%
99	0.0814%	0.1149%	100	0.2105%	0.5631%
101	0.1771%	0.3141%	102	0.0781%	0.1321%
103	0.1035%	0.4914%	104	0.1570%	0.2704%
105	0.1456%	0.2559%	106	0.1210%	0.1871%
107	0.1347%	0.5318%	108	0.0841%	0.1078%
109	0.0630%	0.1170%	110	0.0513%	0.0735%

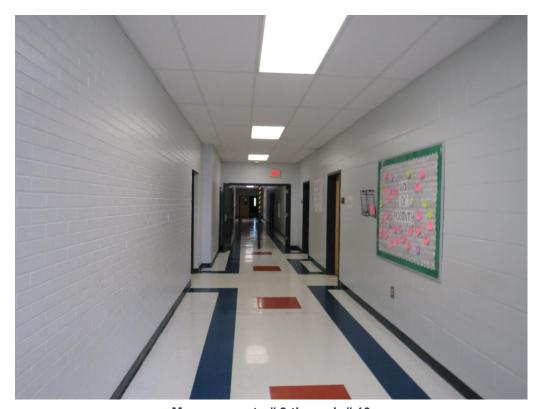

	Site Reading			Site Reading	
Loc#	Avg	Max	Loc#	Avg	Max
111	0.0598%	0.1401%	112	0.1203%	0.2142%
113	0.0171%	0.0242%	114	0.0186%	0.0334%
115	0.1505%	0.3729%	116	0.1581%	0.2965%
117	0.1073%	0.3988%	118	0.1387%	0.2844%
119	0.1376%	0.2164%	120	0.1765%	0.3603%
121	0.1633%	0.3002%	122	0.1611%	0.2956%
123	0.1561%	0.2501%	124	0.1445%	0.2456%
125	0.1457%	0.3163%	126	0.1285%	0.2816%
127	0.1312%	0.2458%	128	0.0679%	0.2353%
129	0.1342%	0.5649%	130	0.0871%	0.3683%
131	0.1677%	0.2185%	132	0.0405%	0.2123%
133	0.1974%	0.9424%	134	0.0587%	0.1681%
135	0.2172%	0.9774%	136	0.1582%	0.3062%
137	0.2115%	0.9544%	138	0.0563%	0.2035%
139	0.0626%	0.2959%	140	0.2678%	1.0570%

Measurement Readings are MPE % of FCC General Population Limits

Summary: The maximum spatially averaged power density reading was $\underline{0.9289\%}$ of the FCC General Population limits



Measurement # 1



Measurements # 2 through # 4

Measurements # 5 through # 8

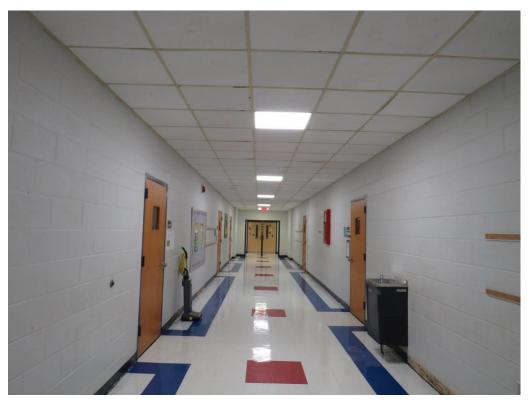
Measurements # 9 through # 10

Measurements # 11 through # 12

Measurements # 13 through # 14

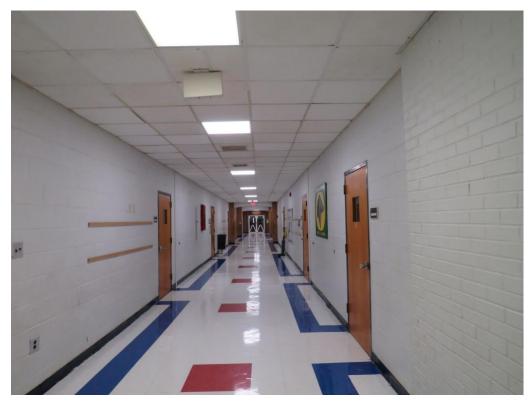
Measurements # 15 through # 16

Measurements # 17 through # 18



Measurements # 19 through # 20

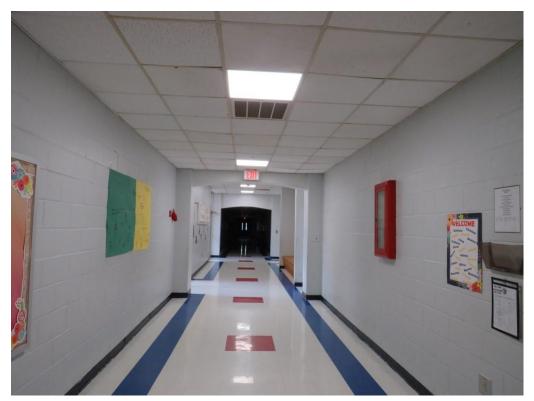
Measurements # 21 through # 22



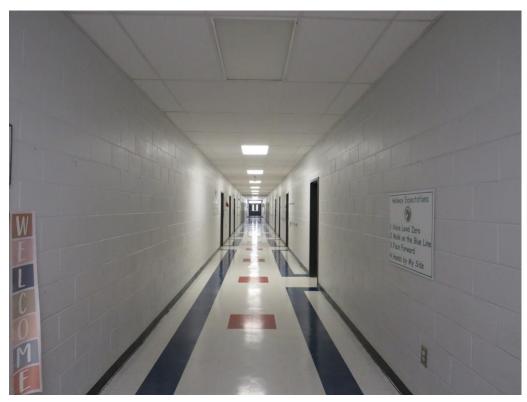
Measurements # 23 through # 24

Measurements # 25 through # 26

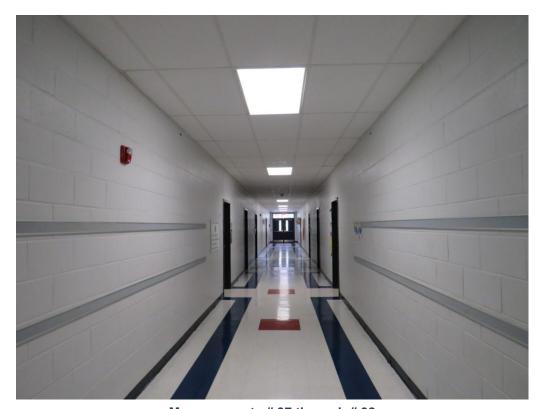
Measurements # 27 through # 28



Measurements # 29 through # 30



Measurements # 31 through # 32



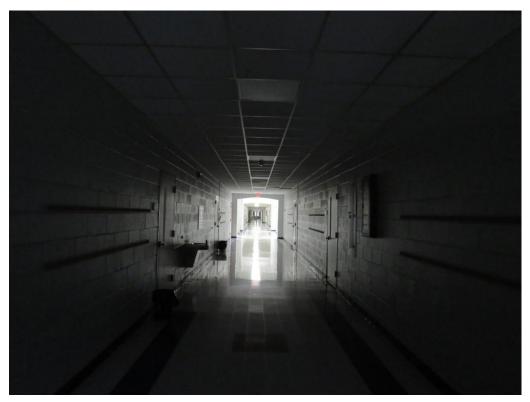
Measurements # 33 through # 34

Measurements # 35 through # 36

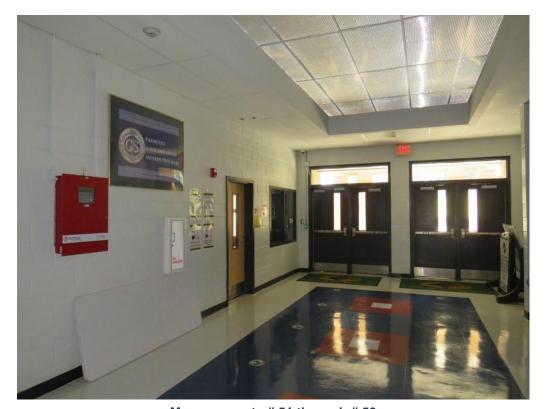
Measurements # 37 through # 38

Measurements # 39 through # 40

Measurements # 41 through # 43



Measurements # 44 through # 47



Measurement # 48

Measurements # 49 through # 50

Measurements # 51 through # 53

Measurements # 54 through # 56

Measurements # 57 through # 58

Measurements # 59 through # 60

Measurements # 61 through # 62

Measurement # 63

Measurements # 64 through # 67

Measurements # 68 through # 71

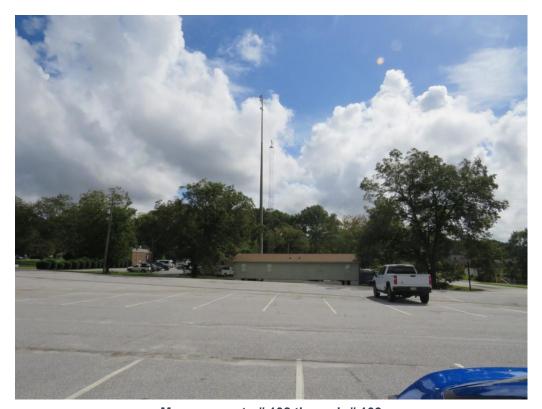
Measurements # 72 through # 73

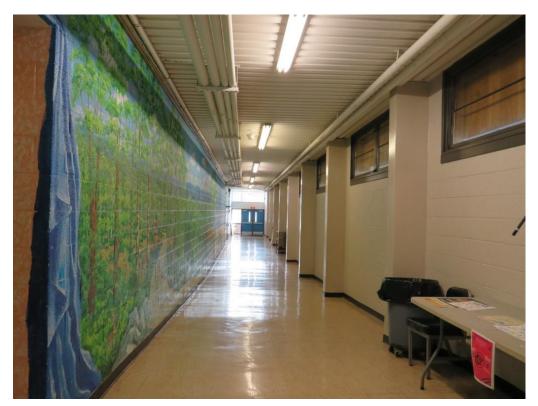
Measurements # 74 through # 75

Measurements # 76 through # 77

Measurements # 78 through # 81

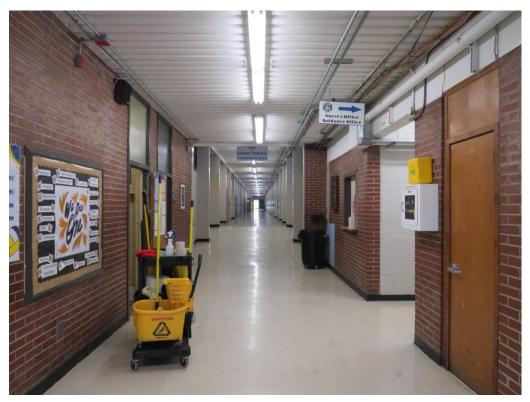
Measurements # 82 through # 83


Measurements # 84 through # 93


Measurements # 94 through # 103

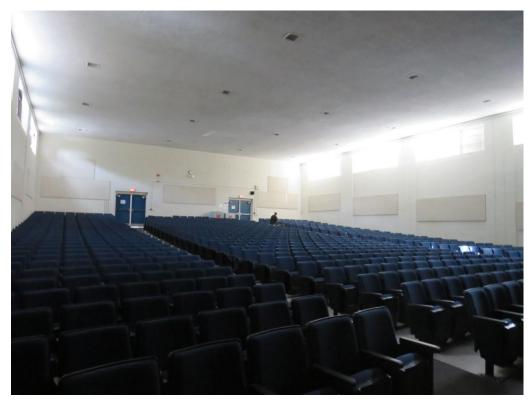
Measurements # 104 through # 107

Measurements # 108 through # 109



Measurements # 110 through # 112

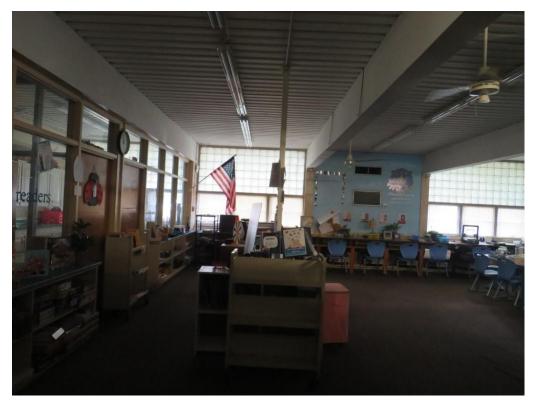
Measurements # 113 through # 114



Measurements # 115 through # 116

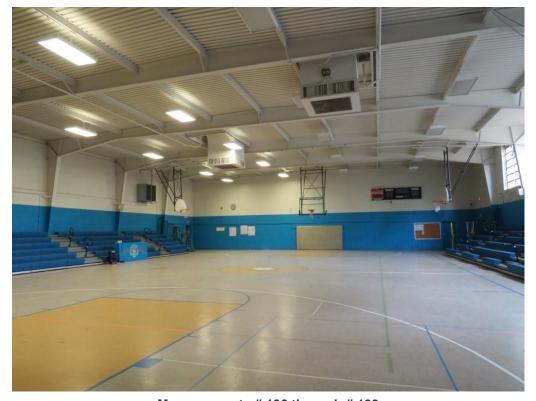
Measurements # 117 through # 118

Measurements # 119 through # 123



Measurements # 124 through # 129

Measurements # 130 through # 131



Measurements # 132 through # 133

Measurements # 134 through # 135

Measurements # 136 through # 139

Measurement # 140

RECOMMENDATIONS FOR COMPLIANCE

4 Recommendations for Compliance

On-site measurements depicting cumulative exposure conditions from all RF sources at accessible areas were found to be below the RF Exposure Limits specified in 47 C.F.R. § 1.1310.

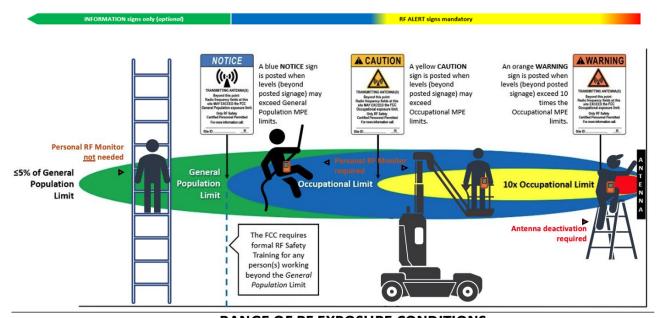
- No mitigation action required.

Mitigation for Compliance

For any area where cumulative RF power density exceeds 100% of the FCC General Population MPE limits, access controls with appropriate RF alerting signage must be established and maintained to restrict access to authorized personnel. Signage must be posted to be visible upon approach from any direction to provide notification of potential conditions within these areas.

Per FCC requirements for compliance, the following content is required on RF alerting signage:

- a) RF energy advisory symbol and signal word appropriate for the potential exposure category
- b) A description of the RF source (e.g., transmitting antennas)
- c) Behavior necessary to avoid over-exposure (e.g., do not climb tower unless you know that antennas are not energized; stay behind barrier or off of markings)
- d) Up-to-date contact information (e.g., monitored phone number or email address connected to someone with authority and capability to provide prompt response).
- e) Any sign attached directly to an antenna must include the separation distance at a font size commensurate with the safe separation distance.


Additional Requirements

- Signage should conform to IEEE C95.2-2018 and the ANSI/NEMA Z535 series of standards.
- RF alerting signs must be legible from a distance of 5 feet from the boundary of the area where the FCC General Population limits are exceeded in accordance with OSHA rules (29 CFR § 1910.145(f)(4)(ii))).
- INFORMATION signs displaying contact information AND GUIDELINES signs are considered optional and may be utilized at antenna installations where the FCC limits may not be exceeded.

- Positive access control is required to restrict access to areas where the FCC General Population limits
 may be exceeded. Controls such as physical barriers to entry imposed by locked doors, hatches and ladders
 or other access control mechanisms may be supplemented by alarms that alert the individual and notify site
 management of a breach in access control.
- Appropriate RF Safety & Awareness Training is required for any person that may encounter controlled areas in order to understand the meaning of RF alerting signage, as well as the behaviors necessary to ensure safety. In order to perform work within restricted area where the General Population limits may be exceeded, workers should be trained in RF safety and equipped with personal protective equipment (e.g. RF personal monitor). Lockout/tagout or scheduled outages may be employed to maintain a safe work environment within these areas. Further, untrained workers should not have access to controlled locations without supervision by trained occupational personnel.

RANGE OF RF EXPOSURE CONDITIONS

NOT TO SCALE

Standard Minimum Font Sizes & Safe Viewing Distances

(Source: ANSI Z535.2-2001 (Table B1))

Minimum Safe Viewing Distance		Minimum Letter Height for FAVORABLE Reading Conditions			Minimum Recommended Sign Size *
(ft)	(m)	(point size)	(in)	(cm)	(in)
≤4	≤1.2	16	0.16	.4	5 x 7
6	1.8	24	0.24	0.6	7 x 10
8	2.4	32	0.32	0.8	8 x 12
10	3.0	40	0.40	1.0	11 x 18
15	4.6	60	0.60	1.5	15 x 24
20	6.1	80	0.80	2.0	19 x 30
30	9.1	120	1.20	3.0	TBD**
40	12.2	160	1.60	4.1	TBD**
60	18.3	240	2.40	6.1	TBD**
80	24.4	320	3.20	8.1	TBD**
100	30.5	400	4.00	10.2	TBD**
125	38.1	500	5.00	12.7	TBD**
150	45.7	600	6.00	15.2	TBD**

^{*} Sign sizes reflect the minimum size(s) needed to meet FCC/OSHA requirements based on (i) the sign content and artwork shown in this section, and (ii) the minimum safe viewing distance, as specified by ANSI and calculated by our RFMaster™ software.

All minimum safe viewing distances are depicted in the RF modeling diagrams provided in this report.

^{**} Minimum recommended sign sizes are provided herein only for signs that require a minimum safe viewing distance of 0 – 20 feet. Signs requiring a minimum safe viewing distance >20 feet shall be graphically calculated and confirmed by Waterford on a case-by-case basis.

5 Appendix A: Technical Framework

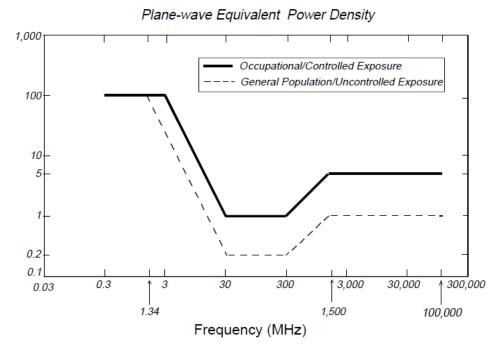
The FCC requires licensees to ensure that new and existing wireless operations do not expose people to hazardous levels of RF electromagnetic energy. Service providers consider compliance with these rules when designing new sites or modifying existing operations that could change the RF environment. The FCC exposure rules have been codified in response to the National Environmental Policy Act of 1969 which requires government agencies to evaluate the impact of their actions on the "quality of the human environment." Documentation of adherence to these rules is typically included in the environmental compliance applications submitted to local authorities responsible for reviewing and approving new or modified telecommunications installations and is maintained by the FCC licensee.

The FCC rules are based on exposure limits established by scientific and engineering organizations that review human health research in this field. At RF frequencies, the electromagnetic waves utilized by cellular sites represent non-ionizing radiation which can be absorbed by the human body. The FCC limits include a 50-fold safety factor above exposure levels where adverse thermal effects may result. By contrast, the energy available in ionizing radiation (e.g. X-rays) is higher and has the ability to permanently damage tissue cells at the molecular level. Unlike ionizing radiation, exposure to non-ionizing radiation does not have cumulative effects and the FCC limits are based on the body's thermoregulation capabilities.

The FCC requires licensees to ensure that persons are not exposed to radiofrequency electromagnetic energy power densities in excess of the Maximum Permissible Exposure ("MPE") limits as set forth in 47 C.F.R. §§ 1.1307(b) and 1.1310. The limits are derived from maximum Specific Absorption Rate (SAR) values of the human body for two tiers of permissible exposure differentiated by the situation in which the exposure takes place and/or the status of the individuals who are subject to exposure.

General Population / uncontrolled exposure limits apply to those situations in which persons may not be aware of the presence of electromagnetic energy, where exposure is not employment-related, or where persons cannot exercise control over their exposure.

Occupational / **controlled** exposure limits apply to situations in which persons are exposed as a consequence of their employment, have been made fully aware of the potential for exposure, and can exercise control over their exposure.


Based on these criteria, the FCC limits for the General Population are associated with continuous exposure conditions and exposure levels below these limits are not hazardous. The FCC General Population limit is 5 times more restrictive than the Occupational limits.

As a practical method of evaluating compliance in deployment scenarios, the FCC has set forth MPE limits shown in Table 1 below which are derived from the *whole-body SAR limits*. Specified in terms of electric field strength, magnetic field strength and equivalent plane-wave power density, compliance may be evaluated through computational or measurement methods provided in the FCC Office of Engineering & Technology Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" (OET-65). Factors that determine exposure conditions include frequency, operating power, distance, and directivity of the antenna.

	Limits for General Population/ Uncontrolled Exposure		Limits for Occupational/ Controlled Exposure	
Frequency (MHz)	Power Density (mW/cm²)	Averaging Time (minutes)	Power Density (mW/cm²)	Averaging Time (minutes)
30-300	0.2	30	1	6
300-1500	f/1500	30	f/300	6
1500-100,000	1.0	30	5.0	6

f=Frequency (MHz)

<u>Figure 1.</u> FCC Limits for Maximum Permissible Exposure (MPE)

From OET-65

Compliance assessment involves consideration of the cumulative contributions of all wireless operations. The power density resulting from an RF source may be expressed as a percentage of the frequency-specific limits. In scenarios involving multiple RF emitters, the percentage of the FCC limits from each source are *summed* to determine if 100% of the exposure limit has been exceeded at a given location. At these areas of concern, access controls with appropriate RF alerting signage must be established and maintained to restrict access to authorized personnel.

An evaluation of existing environmental conditions may be performed through predictive modeling as set forth in OET-65 or collecting power density measurements. The impact of new or modified wireless operations must be assessed in this cumulative scenario and any area of concern that is accessible to members of the General Population must be mitigated. In situations where the predicted MPE exceeds the General Population threshold in an accessible area as a result of emissions from multiple transmitters, FCC licensees that contribute greater than 5% of the aggregate MPE share responsibility for mitigation.

APPENDIX B: QUALIFICATIONS OF WATERFORD

Based on the computational guidelines set forth in FCC OET Bulletin 65, Waterford Consultants, LLC has developed software to predict the overall Maximum Permissible Exposure possible at any location given the spatial orientation and operating parameters of multiple RF sources. The power density in the *far-field* of an RF source is specified by OET-65 Equation 5 as follows:

$$S = \frac{EIRP}{4 \cdot \pi \cdot R^2} \text{ (mW/cm}^2)$$

where EIRP is the Effective Radiated Power relative to an isotropic antenna and R is the distance between the antenna and point of study. Additionally, consideration is given to the manufacturers' horizontal and vertical antenna patterns as well as radiation reflection. At any location, the predicted power density in the *far-field* is the spatial average of points within a 0 to 6-foot vertical profile that a person would occupy. *Near-field* power density is based on OET-65 Equation 20 stated as

$$S = \left(\frac{180}{\theta_{RW}}\right) \cdot \frac{100 \cdot P_{in}}{\pi \cdot R \cdot h} \text{ (mW/cm}^2)$$

where P_{in} is the power input to the antenna, θ_{BW} is the horizontal pattern beam-width and h is the aperture length.

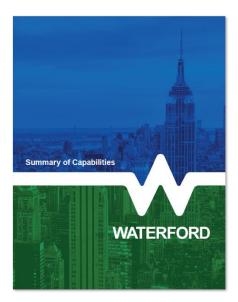
Exposure conditions in the *near-field* of a microwave dish antenna may vary but the maximum power density is provided by OET-65 Equation 13 as follows:

$$S_{nf} = \frac{16 \eta P}{\pi D^2} \text{ (mW/cm}^2\text{)}$$

where η is aperture efficiency (0.75) and D is the antenna diameter.

Some antennas employ beamforming technology where RF energy allocated to each customer device is dynamically directed toward their location. In this analysis, predicted exposure levels are based on all beams at full utilization (i.e. full power) simultaneously focused in any direction. As this condition is unlikely to occur, the actual power density levels at ground and at adjacent structures are expected to be less that the levels reported. These theoretical results represent worst-case predictions as all RF emitters are assumed to be operating at 100% duty cycle.

6 Appendix B: Qualifications of Waterford Consultants, LLC


With more than 100 team-years of experience, Waterford Consultants, LLC [Waterford] provides technical consulting services to clients in the Radio Communications and antenna locating industry. Waterford retains professional engineers who are placed in responsible charge of the processes for analysis.

Waterford is familiar with 47 C.F.R. § § 1.1307(b)(3) and 1.1310 along with the general Rules, Regulations, and policies of the FCC. Waterford work processes incorporate all specifications of FCC Office of Engineering and Technology, Bulletin 65 ("OET65"), from the website: www.fcc.gov/oet/rfsafety and follow criteria detailed in 47 CFR § 1.1310 "Radiofrequency radiation exposure Limits".

Within the technical and regulatory framework detailed above, Waterford developed tools according to recognized and generally accepted good engineering practices. Permissible exposure limits are band specific, and the Waterford computerized modeling tools correctly calculate permissible exposure based on the band(s) specified in the input data. Only clients and client representatives are authorized to provide input data through the Waterford web portal. In securing that authorization, clients and client representatives attest to the accuracy of all input data.

Waterford Consultants, LLC attests to the accuracy of the engineering calculations computed by those modeling tools. Furthermore, Waterford attests that the results of those engineering calculations are correctly summarized in this report.

To download an electronic copy of our Summary of Capabilities brochure, please clicking the image below

APPENDIX C: ROOFMASTER

7 Appendix C: RoofMaster

RoofMaster™ is the software package that Waterford Consultants, LLC created to model RF environments associated with multiple emitters where the potential exists for human exposure. Based on the computational guidelines set forth in OET Bulletin 65 from the Federal Communications Commission (FCC), RoofMaster™ considers the operating parameters of specified RF sources to predict the overall Maximum Permissible Exposure possible at a given location. These theoretical results represent worst-case predictions as emitters are assumed to be operating at 100% duty cycle.

From the FCC document:

"The revised OET Bulletin 65 has been prepared to provide assistance in determining whether proposed or existing transmitting facilities, operations or devices comply with limits for human exposure to radiofrequency (RF) fields adopted by the Federal Communications Commission (FCC). The bulletin offers guidelines and suggestions for evaluating compliance."

http://transition.fcc.gov/Bureaus/Engineering Technology/Documents/bulletins/oet65/oet65.pdf

APPENDIX D: STATEMENT OF LIMITING CONDITIONS

8 Appendix D: Statement of Limiting Conditions

Waterford Consultants, LLC field personnel have visited the site and collected data with regard to the MPE environment. Waterford Consultants will not be responsible for matters of a legal nature that affect the site or property. The property has been analyzed under the premise that it is under responsible ownership and management and our client has the legal right to conduct business at this facility.

Due to the complexity of some wireless sites, Waterford Consultants has created this report utilizing best industry practices and due diligence. Waterford Consultants cannot be held accountable or responsible for anomalies or discrepancies due to actual site conditions (i.e., mislabeling of antennas or equipment, inaccessible cable runs, inaccessible antennas or equipment, etc.) or information or data supplied by Wireless Carrier, the site manager, or their affiliates, subcontractors or assigns.

Waterford Consultants has provided the results of a computer-generated model in this MPE Site Compliance Report to show approximate dimensions of the site, and the model results is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Waterford Consultants' recommendations.

Waterford Consultants will not be responsible for any existing conditions or for any engineering or testing that might be required to discover whether adverse safety conditions exist. Because Waterford Consultants is not expert in the field of mechanical engineering or building maintenance, this MPE Site Compliance Report must not be considered a structural or physical engineering report.

Waterford Consultants obtained information used in this MPE Site Compliance Report from sources that Waterford Consultants considers reliable and believes them to be true and correct. Waterford Consultants does not assume any responsibility for the accuracy of such items that were furnished by other parties.

9 Appendix E: Glossary of Terms

Definitions of the following technical words, terms, and/or phrases reflected in the report provided by Waterford are included as follows:

Compliance assessment

Sometimes referred to as a GAP assessment, it is intended to identify gaps between an existing control environment and what is required for compliance with Federal (FCC) regulations

Controlled exposure limits

Apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Cumulative exposure

Cumulative exposure is the total dose resulting from repeated exposures of radiation to an occupationally exposed worker to the same portion of the body, or to the whole body, over a period of time.

Effective Radiated Power (EIRP or ERP)

Electromagnetic emissions (EME)

Aka *electromagnetic radiation*, EME is energy that is propagated through free space or through a material medium in the form of electromagnetic waves, such as radio waves, visible light, and gamma rays.

Far field

The far field is the region in which the field acts as "normal" electromagnetic radiation. In this region, it is dominated by electric or magnetic fields with electric dipole characteristics.

FCC

Federal Communications Commission; an independent agency of the United States government that regulates communications by radio, television, wire, satellite, and cable across the United States. The FCC maintains jurisdiction over the areas of broadband access, fair competition, radio frequency use, media responsibility, public safety, and homeland security

General Population limit

Applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure

IEEE

lonizing radiation

Maximum permissible exposure (MPE)

Mitigation for compliance

Narda

Near field

Non-ionizing radiation

Institute of Electrical and Electronics Engineers; a professional association for electronic engineering and electrical engineering (and associated disciplines). It was formed in 1963 from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers

A type of energy released by atoms that travels in the form of electromagnetic waves (gamma or X-rays) or particles (neutrons, beta or alpha); can penetrate the human body and the radiation energy can be absorbed in tissue. This has the potential to cause harmful effects to people, especially at high levels of exposure

The FCC's regulations have specific MPE requirements for radiated electric fields, magnetic fields. and power density. MPEs are derived from the Specific Absorption Rate (SAR) at which tissue absorbs RF energy, usually expressed in watts per kilogram (W/kg).

Actions or activities required for compliance with FCC/OSHA regulations and to ensure a safe working environment. A harmonized and integrated compliance program – one that includes appropriate risk-management activities and controls – will eliminate redundant efforts, enable execution, ensure safety, and facilitate adherence to compliance requirements by the business and governing federal agencies.

A leading international supplier of measuring equipment in the EMF / EME Safety, RF Test & Measurement and EMC sectors

A part of the radiated field that is below distances shorter than the Fraunhofer distance, which is given from the source of the diffracting edge or antenna of longitude or diameter; near field, as the name suggests, is very close to the antenna while far field is further away.

Non-ionizing radiation includes the spectrum of ultraviolet (UV), visible light, infrared (IR), microwave (MW), radio frequency (RF), and extremely low frequency (ELF); does not penetrate deep into the tissues but increases the risk of damage to the skin and eyes. Dependent on the energy and exposure time, non-ionising radiation can cause localised heating, or photochemical reactions can occur with possible permanent harm. Exposure should therefore be minimised.

Occupational limit

Apply to situations in which persons are exposed as a consequence of their employment, have been made fully aware of the potential for exposure, and can exercise control over their exposure.

OET-65

Bulletin published by the FCC's Office of Engineering & Technology in 1997; establishes guidelines for human exposure to radiofrequency electromagnetic field and achieving FCC compliance

Personal RF monitor

Part of the personal protective equipment (PPE) worn by a person working in areas exposed to radio frequency radiation. A personal RF safety monitor is typically worn either on the torso region of the body or handheld and is required by the occupational safety and health acts of many telecommunication companies

Positive access control

Refers to the practice of restricting entrance to a property, a building, or a room to authorized persons; can be achieved by a human (a guard, bouncer, or receptionist), through mechanical means such as locks and keys, or through technological means such as access control systems

Power density

The amount of power (time rate of energy transfer) per unit volume; power density may also refer to a volume. It is then also called volume power density, which is expressed as W/m3

Radio frequency (RF)

The oscillation rate of an alternating electric current or voltage or of a magnetic, electric, or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz

Specific Absorption Rate (SAR)

A measure of the rate at which energy is absorbed per unit mass by a human body when exposed to a radio frequency (RF) electromagnetic field. ... It is defined as the power absorbed per mass of tissue and has units of watts per kilogram (W/kg)

Spatial average

The average power density observed when the Narda meter and probe is swept over an entire person (0 - 6 feet) for purposes of comparing with FCC exposure limits

Spatial peak

The maximum power density observed when the Narda meter and probe are swept over an entire person (0 - 6 feet) for purposes of comparing with FCC exposure limits; considered "worst case" – the average will not exceed this value

Uncontrolled exposure limits

Apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure